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Abstract 35 
The HYSPLIT dispersion model has different options to estimate the turbulent 36 

mixing depending on the availability of stability and turbulent parameters in the 37 

meteorological data. Dispersion simulations using different mixing options were 38 

conducted to simulate two controlled tracer experiments – the Project Sagebrush phase 1 39 

(PSB1) for the sub-kilometer transport and the Cross Appalachian Tracer Experiment 40 

(CAPTEX) for the long-range transport. Through the comparisons of velocity variance 41 

and the evaluations of tracer concentrations, we evaluated different estimations of the 42 

turbulent velocity variance affecting the dispersion results. The mixing options in 43 

HYSPLIT are the Belijaars-Holtslag (BH) method, the Kantha-Clayson (KC) method, the 44 

turbulent kinetic energy (TKED) option, and the turbulent exchange coefficient (EXCH) 45 

option. The KC and EXCH method produced a larger maximum of the vertical velocity 46 

variance and at a higher altitude than other mixing options did. The vertical velocity 47 

variance profile of the BH scheme had a sharp increase from the surface to the height of 48 

the maximum values. The TKED option generated a flat profile with the smallest 49 

variation in its value with height. The plumes generated by the BH and TKED method 50 

(weaker mixing) had higher concentrations near the surface than those driven by the KC 51 

and EXCH option (stronger mixing). The statistical rank for the dispersion result using 52 

the TKED option was slightly better than others while the BH mixing generated results 53 

with a roughly worse rank. No mixing option always outperformed the other options. 54 

HYSPLIT users can select a mixing option according to the scenario and availability of 55 

meteorological fields, and use different options to generate dispersion ensembles.  56 

 57 
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1. Introduction 60 

To simulate the movement of pollutants in the atmosphere, a Lagrangian model 61 

simulates the emission by releasing many particles at the source location over a period of 62 

time. By adding a random component according to the dispersive nature of the 63 

atmosphere to the advective motion of each particle, the particles released at the source 64 

will be transported and mixed in space and time (Draxler and Hess, 1998). The turbulent 65 

component of the process is the product of the computer-generated random number and 66 

the standard deviation of the turbulent velocity. HYSPLIT, the dispersion model 67 

developed by the National Oceanic and Atmospheric Administration Air Resource 68 

Laboratory, uses regional and global products from various numerical weather models – 69 

the Weather Research and Forecasting (WRF; Powers et al. 2017) model, the Global 70 

Forecast System (GFS; Kanamitsu, 1989) model, the Modern-Era Retrospective analysis 71 

for Research and Applications (MERRA; Rienecker et al. 2011), the European Center for 72 

Medium-Range Weather Forecasts (ECMWF; Dee et al. 2011), etc. Depending on the 73 

availability of stability and turbulent parameters in the meteorological data used to drive 74 

the dispersion simulation, users can choose different options in HYSPLIT to estimate the 75 

turbulent velocity variances (Stein et al. 2015). The estimation can be based on the 76 

stability function diagnosed from other meteorological variables such as friction velocity 77 

and mixing height. If the meteorological model does not provide them, temperature and 78 

wind soundings are used to diagnose the boundary layer stability parameters. Other 79 

methods include using the total turbulent kinetic energy (TKE) or mixing diffusivity to 80 

calculate the standard deviation of turbulent velocity (Draxler and Hess, 1997).  81 
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The main goal of this study is to understand the mixing characteristics generated 82 

by different estimations of the turbulent velocity variance affecting the dispersion results. 83 

Toward this aim, we conducted meteorological simulations with the Advanced Research 84 

core of WRF for the Project Sagebrush phase 1 (PSB1; Finn et al. 2016). The WRF 85 

output includes variables required for computing stability parameters, as well as total 86 

turbulent kinetic energy and turbulent exchange coefficient so that we can compare and 87 

evaluate all mixing options in HYSPLIT with observations taken during the tracer 88 

experiment. PSB1 consisted of five tracer releases in the afternoons of October 2013 and 89 

aimed for the sub-kilometer scale transport with near neutral or unstable stability 90 

conditions. Flux measurements, including turbulent velocity variance, are available along 91 

with tracer concentration observations, which provides a platform for the direct 92 

evaluation of the turbulent variables and the evaluation of dispersion results 93 

corresponding to different mixing options. Prior to this study Ngan et al. (2018) assessed 94 

the performance of the WRF-HYSPLIT modeling system for the dispersion scenario 95 

represented by PSB1, featuring daytime convective conditions at fine spatial (a few 96 

hundred meters) and temporal (10-min averaging) scales. The turbulent mixing is an 97 

essential component affecting HYSPLIT’s performance but not yet investigated in the 98 

previous study. Thus, in the current work, we focus on evaluating the turbulent mixing 99 

methods available in HYSPLIT and their impacts on dispersion results as compared 100 

against PSB1 which offers a unique set of observations for the comparison of both 101 

velocity variance and tracer concentration. In addition, we conducted HYSPLIT 102 

simulations driven by the WRF data using different mixing options for the Cross 103 

Appalachian Tracer Experiment (CATEX; Ferber et al. 1986). Unlike the Sagebrush 104 
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experiment focusing on a fine spatial and temporal scale, CAPTEX consisting of six 3-h 105 

releases aimed to simulate the long-range transport and diffusion of pollutants. The 106 

evaluations of dispersion results with measured concentrations provide the insight to 107 

assess the performance of different mixing methods.  108 

The rest of the paper is organized as follows. Section 2 reviews the different 109 

options in HYSPLIT to compute the velocity variance. Section 3 describes the model 110 

configurations for the meteorological and dispersion models. In Section 4, we evaluated 111 

the velocity variance computed in HYSPLIT with measurements taken during the 112 

Sagebrush experiments. The dispersion simulations for the controlled tracer experiment – 113 

PSB1 and CAPTEX were compared with measured concentration in Sections 5 and 6, 114 

respectively. Finally, Section 7 presents the conclusions and future research directions. 115 

2. Overview of mixing options in HYSPLIT 116 

To compute the transport and mixing of particles, HYSPLIT treats the advection 117 

and dispersion processes separately. The advection calculation uses the three-dimensional 118 

velocity field while the dispersion calculation requires the standard deviations of the 119 

turbulent velocity {𝜎𝜎𝑖𝑖 = [𝜎𝜎𝑤𝑤,𝜎𝜎𝑢𝑢,𝜎𝜎𝑣𝑣]} to add a random component to the advective motion. 120 

There are different methods to estimate the standard deviation of turbulent velocity based 121 

on the availability of stability and turbulent parameters in the meteorological data. The 122 

full list of equations for all parameters associated with each method is in Draxler and 123 

Hess (1998). An abstract of the four mixing options available in HYSPLIT is described 124 

below.  125 

a. Beljaars-Holtslag (BH) method 126 
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Following Beljaars and Holtslag (1991) for a stable surface layer, and Betchov 127 

and Yaglom (1971) and Kadar and Perepelkin (1989) for an unstable surface layer, the 128 

model computes the normalized profiles for heat and momentum, and then the vertical 129 

mixing coefficient according to the profiles and other stability parameters such as friction 130 

velocity, convective velocity scale, and Obukhov length. To obtain the vertical velocity 131 

variance, the model divides the diagnosed mixing coefficient by a Lagrangian time scale. 132 

This option is labeled hereafter as “BH”.  133 

b. Kantha-Clayson (KC) method  134 

Following Kantha and Clayson (2000), the model defines the turbulent velocity 135 

variances as a function of friction velocity, convective velocity scale, and boundary layer 136 

depth. HYSPLIT uses it as the default when the momentum and heat flux variables are 137 

available in the meteorological data. This method (named hereafter “KC”) does not need 138 

the intermediate step of computing the mixing coefficient and the use of turbulent time 139 

scales. 140 

c. Using the turbulent kinetic energy (TKED) 141 

If the meteorological data provide the turbulent kinetic energy, the model 142 

partitions the values to the vertical and horizontal components using the anisotropy ratio. 143 

According to experimental data, about one-third of TKE are assigned to the vertical 144 

velocity variance while twice as much of the values are partitioned to the horizontal 145 

components. HYSPLIT uses this as default anisotropy. However, users can let the model 146 

compute the anisotropy factors according to the Kantha-Clayson equations instead of 147 

using a partitioning factor constant in space and time. This option is labeled hereafter as 148 

“TKED”.  149 
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d. Using the turbulent exchange coefficient (EXCH) 150 

This method computes the velocity variance by dividing the turbulent exchange 151 

coefficient by the vertical Lagrangian time scale, which is set to 100 s following Draxler 152 

and Hess (1998). This option is labeled hereafter as “EXCH” and is newly added to 153 

HYSPLIT with using the WRF meteorology. The turbulent exchange coefficient is 154 

computed within the user-selected planetary boundary layer (PBL) parameterization in 155 

WRF. The two classes of PBL approaches are 1.5-order TKE based schemes and first-156 

order diagnostic K-profile schemes. The former diagnoses the exchange coefficient as a 157 

function of the mixing length, stability function, and prognostic TKE while the latter 158 

computes it from variables such as velocity scale, PBL height, and Prandtl number (Shin 159 

and Dudhia, 2016).  160 

3. Experimental Data and Model Configurations 161 

The Project Sagebrush phase 1 tracer fields experiment took place at the Idaho 162 

National Laboratory (43.59 N and 112.94 W) during October 2013 to understand sub-163 

kilometer dispersion by performing continuous 2.5-h inert tracer (SF6) releases over flat 164 

terrain (Finn et al. 2016). Tracer releases were conducted on five afternoons (intensive 165 

observation periods, or IOPs) under either neutral or unstable stability conditions. The 166 

measurement network consisted of five concentric arcs located from 200 – 3200 m away 167 

from the release location. Tracer samples were obtained starting 30 minutes after the 168 

release in 10-min intervals. Comprehensive meteorological measurements, including 169 

turbulent velocity variance data, were available during the experimental period.  170 
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The WRF Version 3.7 was used to generate meteorological data for the controlled 171 

tracer experiments. The domain configuration and physic options followed Ngan et al. 172 

(2018) for PSB1. In this study, we selected the Mellor-Yamada-Nakanishi-Niino (MYNN) 173 

2.5 level TKE scheme (Nakanishi and Niino, 2006) for the planetary boundary layer 174 

(PBL) parameterization and the corresponding MYNN surface layer scheme which works 175 

together with the Noah land surface model (Chen and Dudhia, 2001) as lower boundary 176 

conditions to provide the surface forcing for the vertical transport (Shin et al. 2012). The 177 

evaluations in Ngan et al. (2018) showed that the meteorological data for IOP4 and IOP5 178 

featuring unstable conditions with moderate winds were simulated well by WRF. 179 

However, the model performance was degraded due to the underestimation of strong 180 

winds in IOP3 with neutral conditions and the inaccurate prediction of wind direction in 181 

IOP2 featuring unstable conditions with light winds. This study did not include IOP1 due 182 

to the sampling network not observing the plume (Finn et al. 2015). HYSPLIT 183 

simulations were configured following Ngan et al. (2018); 250,000 Lagrangian particles 184 

were released and lasted two-and-a-half hours. The tracer concentration was calculated 185 

by summing particles in the volume of 100 x 100 m and from the surface to 25 m above 186 

ground. Time averaging was set to 10 minutes. HYSPLIT was driven by WRF model 187 

output with a horizontal resolution of 0.333-km (the most inner WRF domain) and a 188 

temporal resolution of 5 minutes. A sensitivity test on the meteorological grid and its 189 

impact on the dispersion results for tracer releases in PSB1 was presented in Ngan et al. 190 

(2018). The analysis shows that under the meteorological conditions represented by PSB1, 191 

the HYSPLIT results for IOP 2, 4, and 5 were not sensitive to the grid resolution of the 192 
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WRF data. The mixing options described in Section 2 were used to simulate four IOPs 193 

conducted in PSB1. 194 

CAPTEX took place in the northeastern United State and southeastern Canada 195 

from mid-September through the end of October 1983. An inert perfluorocarbon tracer 196 

were released to simulate the transport and dispersion of pollutants at scales of hundred to 197 

a thousand kilometers (Ferber et al. 1986). Six 3-h releases were conducted at Dayton, 198 

Ohio during the afternoon (releases 1-4) and at Sudbury, Ontario, Canada during the 199 

nighttime (releases 5 and 7). The measurement network included 85 ground-level stations 200 

distributed 300 – 800 km from the source, providing 3- and 6-h average tracer 201 

concentrations for three-day periods after the tracer release. WRF data with a horizontal 202 

resolution of 9 km was the meteorological input to drive HYSPLIT. The WRF simulation 203 

was initialized by the WRF archived dataset and nested in the coarse resolution domain 204 

introduced in Ngan and Stein (2017). The simulation used the MYNN 2.5 level TKE-205 

based PBL scheme and its corresponding surface layer scheme, while other physics 206 

options followed Ngan and Stein (2017). The hourly meteorological files were used to 207 

drive HYSPLIT simulations running with the four mixing options. A concentration grid 208 

with ~25-km horizontal resolution was set for the simulations with one vertical layer 209 

from 0 – 100 m above ground. Detailed information of each release is described in Ngan 210 

and Stein (2017).  211 

4. Comparisons of the velocity variances 212 

Figure 1 is the layout of the sampling arcs for the tracer concentration and the 213 

meteorological observation taken during PSB1. The velocity variance (or the standard 214 
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deviation of velocity) was measured at six locations and different heights (Table 1) with 215 

two sodars at the ASC and ART stations, and 3-d sonic anemometers at the other velocity 216 

variance sites (Finn et al. 2016). The measurement of TKE by the ASC site tended to 217 

match well to the measurement of TKE by the five other sites using the 3-d sonic 218 

anemometer while the TKE measurement at the ART site was an order of magnitude 219 

higher than the others. Note that the vertical turbulence measurements at these two sodar 220 

sites are roughly similar in magnitude much of the time. The difference between two 221 

sodars for the observed TKE arises from the measurements along the u and v beams 222 

(Finn et al. 2015). Thus, we excluded the ART sodar results that are probably not reliable 223 

for the model comparison. This section discusses the velocity variance estimated by 224 

different mixing options in HYSPLIT and shows the evaluations with observations taken 225 

during PSB1.  226 

a. Comparisons of the vertical velocity variances 227 

The vertical velocity variance determines how the particles released at the source 228 

location are dispersed in space and time. Figure 2 (a – d) is the profile of the vertical 229 

velocity variance from HYSPLIT using four different mixing options during 12 – 15 230 

MST on October 5th, 2013 (IOP2). Both BH and KC methods diagnose the vertical 231 

velocity variance based upon state variables and variables relevant to the PBL stability. 232 

Depending on the stability regimes and the altitudes (within the surface layer, in the PBL, 233 

or in the free atmosphere), the model has a different set of equations to diagnose the 234 

mixing of particles (Draxler and Hess, 1998). Other than the maximum at the middle of 235 

PBL, the profile of BH and KC mixing options had a secondary maximum transitioning 236 

from the top of the PBL to the free atmosphere (Figure 2 a and b). The vertical velocity 237 
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variance profile from the KC option had a small peak within the surface layer while the 238 

one from the BH option went to almost zero values near the surface. As shown in Figure 239 

2 c and d, the vertical velocity variance profiles from TKED and EXCH options looked 240 

quite different. These two methods depend on the profile of TKE and exchange 241 

coefficient provided by WRF, respectively. The definition of TKE is the summation of 242 

velocity variances (horizontal and vertical) divided by two that represents the strength of 243 

turbulence in the flow. It is computed in WRF’s PBL schemes (the MYNN schemes in 244 

this study) using the prognostic TKE equation. The turbulent exchange coefficient is a 245 

scalar to relate the turbulent flux to the gradient of the associated mean variable. The 246 

MYNN PBL scheme diagnoses the exchange coefficient according to the prognostic TKE, 247 

a mixing length, and a stability function (Nakanishi and Niino, 2006). 248 

There are studies, such as Munoz-Esparza et al. (2018), Ferrero et al. (2018), and 249 

Hari Prasad et al. (2017), showing the problem of the TKE estimation produced by 250 

various WRF’s TKE-based PBL schemes. Ferrero et al. (2018) evaluated several PBL 251 

parameterizations available in WRF with experimental data conducted in Turin, Italy. 252 

The results showed the underestimation of the model TKE in comparison with the 253 

measurements (anemometer at 25 m height) in a summer month and less underestimation 254 

of TKE in a winter month. We compared the predicted TKE from WRF with observed 255 

TKE taken at 30 m height of the GRI tower during PSB1. In addition to the MYNN run, 256 

other simulations were conducted with different TKE-based PBL schemes, including the 257 

Bougeault and Lacarrere scheme (BouLac; Bougeault and Lacarrere, 1989), the Quasi-258 

Normal Scale Elimination scheme (QNSE; Pergaud et al. 2009), the UW boundary layer 259 

scheme (UW; Bretherton and Park 2009), the Mellor-Yamada-Janjic (MYJ; Janjic, 1994), 260 
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and the Grenier-Bretherton-McCaa (GBM; Grenier and Bretherton 2001). The 261 

comparison showed all modeled TKE values were underestimated (Figure 3). Among 262 

various PBL schemes, the BouLac underpredicted the least and MYNN was the second 263 

least underprediction of TKE. The run using MYJ and QNSE schemes underpredicted the 264 

most. The length scales and TKE prediction cause the differences in turbulent exchange 265 

coefficient computed by various PBL schemes. Among the six schemes, the GMB and 266 

UW schemes produced larger exchange coefficient while the QNSE and BouLac had 267 

smaller values during PSB1 (not shown). Thus, these meteorological uncertainties may 268 

have impact on the dispersion result when we use TKED and EXCH mixing options to 269 

estimate the turbulent velocity variance.  270 

The observational tower at the ASC station provides vertical profiles of velocity 271 

variance from 30 – 150 m. Observed vertical velocity variance at ASC ranges from 0.2 – 272 

0.9 m2s-2 with the maximum at about 100 m height (Figure 2e). Note that the stability 273 

condition on the day of IOP2 was unstable with low wind speeds. The KC and EXCH 274 

option generated a maximum vertical velocity variance of about 1.5 m2s-2 at an altitude of 275 

about 500 m. The TKED profile had the smallest maximum values (about 0.5 m2s-2) 276 

among all and a smooth decrease with height from a maximum value to a minimum value 277 

in the free atmosphere. In the BH case, the vertical velocity variance profile at about 100 278 

m height was similar to the observations but the maximum value was slightly 279 

underestimated. Figure 4 is the vertical velocity variance profiles for IOP5 (12 – 15 MST 280 

on October 18th, 2013), which was a weakly unstable condition with moderate wind 281 

speeds. The modeled vertical velocity variance had less variation throughout the 282 

afternoon than the observed values. In comparison with other options, the EXCH profile 283 
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showed larger temporal variability. Note that the sodar measurements for the turbulent 284 

velocity variance available in PSB1 were limited to 30 – 150 m height. The study of Berg 285 

et al. (2017) using year-long vertical variance data from Doppler Lidar data for the 286 

convective boundary layer showed that the maximum of the composite vertical velocity 287 

variance was about 1.2 m2s-2 at about 200 – 700 m height. Thus, the velocity variance 288 

measurements from PSB1 were insufficient to evaluate the simulated maximum vertical 289 

velocity variance, which might occur at the altitude above the sodar could reach.   290 

The comparison of vertical velocity variance at and below 30 m was done using 291 

measurements of 3-d sonic anemometers at the FLX station (3.2 m; Figure 5) and the 292 

GRI station (30 m; Figure 6). The magnitude of the observed vertical velocity variance in 293 

the afternoons of four IOPs was about 0.2 m2s-2 near the surface (3.2 m height). IOP 3 294 

was an exception that its value went up to 0.6 m2s-2. As discussed in Finn et al. (2015), 295 

tracer releases in PSB1 were conducted on days with unstable (or weakly unstable) 296 

stability conditions but IOP3 experienced a neutral condition with strong wind speeds.  297 

The meteorological evaluation presented in Ngan et al. (2018) showed that WRF failed to 298 

generate the rapid increase of high wind speeds observed during IOP3 causing negative 299 

bias for the friction velocity. Thus, we expected the KC option would underestimate the 300 

turbulent mixing because the velocity variances were diagnosed as a function of friction 301 

velocity. In general, the KC and TKED mixing methods overestimated the vertical 302 

velocity variance (except IOP3) while the EXCH mixing slightly underestimated it. At 30 303 

m height (GRI station), the observed vertical velocity variance was about 0.4 – 0.6 m2s-2. 304 

The KC, TKED, and EXCH options generated the values comparable to the 305 

measurements while the vertical velocity variance from KC was larger than those from 306 
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other mixing options. The vertical velocity variance generated by the BH method was 307 

underestimated the most in the comparison with measurements at both 3.2 m and 30 m.  308 

b. Estimation of the horizontal velocity variances 309 

The mixing methods determine the way the meteorological data are processed to 310 

compute vertical and horizontal turbulence. In this study, the horizontal velocity variance 311 

was obtained in proportion to the vertical component. Figure 7 is the time series of 312 

horizontal velocity variance at the FLX station. The magnitude was about 1.2 – 1.8 m2s-2 313 

in the afternoon during the period of tracer release. For the BH mixing scheme, the 314 

diagnosed turbulence is portioned equally between the vertical and horizontal component 315 

resulting in a larger negative bias in the horizontal velocity variance. For the KC and 316 

TKED mixing options, the calculation has more turbulence going into the horizontal 317 

component than the BH method does (Stein et al. 2015). The horizontal velocity variance 318 

in KC and TKED mixing were comparable to the measured values with a small 319 

underestimation. The underestimations of horizontal velocity variances were more 320 

significant in IOP3 than other episodes because of the under-prediction of the wind fields 321 

and vertical mixing.   322 

Using velocity variance measurements taken at different locations and heights in 323 

the area of the sampling array, we computed the ratio of the horizontal and vertical 324 

components (Table 1). The right-most column of the table includes the data only in the 325 

afternoon of four IOP days. The ratio was in the range of 4.5 – 5.8 for data measured near 326 

the surface at 3.2 m or 4 m height. It became smaller, ranging about 1.5 – 2.6, when using 327 

data observed at higher levels (30 m or 45 m). The sodar measurement at the ASC station 328 

showed the ratio of horizontal and vertical velocity variance got to about a one to one 329 
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ratio at 130 m. For the EXCH mixing option, we selected the maximum (5.8733) and 330 

minimum value (1.5430) of the ratios at near surface and 45 m height, respectively. They 331 

were applied to compute the horizontal velocity variance. Two cases, labeled as “EXCH” 332 

and “EXCHm” using the maximum and minimum ratios, respectively, were included in 333 

Figure 7. With a larger scaling factor, EXCH had a larger horizontal velocity variance 334 

than EXCHm which used a smaller scaling factor. However, both cases underestimated 335 

horizontal velocity variance in comparison with the measurements at 3.2 m height. For 336 

the comparison with data at 30 m height, the underestimation decreased. 337 

5. Dispersion results for PSB1 338 

We conducted HYSPLIT simulations performed with different turbulent mixing 339 

parameterizations and driven by WRF meteorological model output for the four IOPs 340 

from PSB1. The mixing options described in the previous section were labeled as BH, 341 

KC, TKED and EXCH. For the mixing option using WRF’s turbulent exchange 342 

coefficient, we conducted two simulations “EXCH” and “EXCHm” by applying the 343 

maximum and minimum ratio of the horizontal and vertical component of measured 344 

velocity variance. The statistical evaluation followed Draxler (2006) which introduced a 345 

cumulative score (so called the Rank, ranging from 0 to 4) including four normalized 346 

components – the correlation coefficient (R), fractional bias (FB), figure-of-merit in 347 

space (FMS), and Kolmogorov-Smirnov parameter (KSP). 348 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅2 + 1 − �𝐹𝐹𝐹𝐹
2
� + 𝐹𝐹𝐹𝐹𝐹𝐹

100
+ �1 − 𝐾𝐾𝐾𝐾𝐾𝐾

100
�  349 

Figure 8 shows the statistical rank of five dispersion simulations for each IOP in 350 

PSB1. The model performed differently with varying mixing options for different 351 
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episodes, but no one mixing option always produced a better result. In general, the range 352 

of statistical scores of simulations using different mixing options for IOP4 and IOP5 was 353 

smaller than those for the other two IOPs, possibly due to WRF more accurately 354 

simulating the wind patterns during IOP4 and IOP5 than IOP2 and IOP3. Other than the 355 

dispersion process in which the estimation of turbulent velocity variance is an essential 356 

component, the advection process driven by the mean winds determines the movement of 357 

the tracer plume. In the IOP4 and IOP5 scenarios, the tracer plume was transported by 358 

northwesterly flows steadily from the source toward the outer arcs of the sampling array 359 

and without much variation throughout the release duration. In general, the rank for 360 

EXCH was better than EXCHm for all four episodes because the larger horizontal 361 

velocity variance in the EXCH simulation generated a wider plume. However, the 362 

dispersion result was not very sensitive to the horizontal velocity variance since the wind 363 

shear was the dominant factor for the spreading of the plume in the horizontal direction.  364 

IOP2 had the lowest rank among all four episodes due to the inaccurate prediction 365 

of varying wind directions associated with the light winds. The modeled plume was 366 

narrower and further downwind, going northeastward to the outer arcs of the sampling 367 

array, than the observed plume (Figure 9).  In this case, the strong mixing produced by 368 

the KC and EXCH method was able to disperse particles more, which resulted in less 369 

overestimation (smaller FB in the rank bar-chart) of the tracer concentration compared to 370 

other cases.  We notice the underprediction of TKE in the comparison of the observed 371 

values at the ASC station (not shown) that caused the weak mixing in the TKED method. 372 

A sensitivity test was conducted using two times of TKE values from WRF to drive a 373 

dispersion simulation with the TKED mixing option. This result had better statistical 374 
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scores (Rank=1.67) compared to the result shown in Figure 9 (Rank=1.47) because the 375 

stronger mixing was able to improve the overprediction of the surface concentration and 376 

the coverage of the plume.  377 

For IOP3, even though the rank had better statistical scores than IOP2, the 378 

simulated plume went out of the sampling array at the beginning of the release. The 379 

weaker mixing generated by the BH and TKED method resulted in higher concentrations 380 

near the source location (better FB in the rank bar-chart) than EXCH did. However, the 381 

BH plume was narrow due to the significant underestimation of the horizontal velocity 382 

variance that resulted in getting the worst rank. For the scenario of IOP3, the strong 383 

mixing in the EXCH simulation caused more underprediction of surface concentration 384 

(worse FB) than other cases. Compared to the TKED plume (Figure 10d), the EXCH 385 

plume had a lower concentration and was slightly wider. The surface wind measurements 386 

indicated strong southwesterly winds during the tracer release while WRF generated light 387 

wind speeds and varying wind directions until southwesterly winds picked up during the 388 

second hour of the release (Ngan et al. 2018). The underestimation of the turbulence near 389 

the surface in the KC mixing option (referring to Figure 5 and Figure 6) due to the 390 

negative bias in the wind speed and friction velocity might cause less mixing than others. 391 

As shown in the difference plot (Figure 10c), the KC case had more particles 392 

accumulating near the source location (in the area within the 200-m arc) while the TKED 393 

run moved particles farther away.  394 

6. Dispersion results for CAPTEX 395 
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HYSPLIT simulations driven by WRF with 9-km grid spacing were conducted 396 

using the four mixing options for the six releases during CAPTEX. Figure 11 shows the 397 

time series of vertical velocity variance profiles for 24 hours after the beginning of an 398 

afternoon tracer release at Dayton, Ohio (CAPTEX 1). The KC and EXCH mixing had 399 

the maximum vertical velocity variance at the 10th model layer (~900 m) during the 400 

afternoon hours (17 – 21 UTC). The maximum values were smaller and occurred at the 401 

lower layers in the other two mixing methods. The profile of the vertical velocity 402 

variance generated by the TKED method was flat with values ranging from about 1.0 – 403 

1.4 m2s-2 from the surface to the middle of the PBL where the maximum was observed. 404 

However, the profile in the EXCH mixing option had large gradients near the surface (the 405 

lowest 3 model layers, 0 – 70 m) and at the top of PBL (13th – 15th model layer, 1.5 – 2.0 406 

km). During the nighttime, close to zero vertical velocity variance values were produced 407 

by the EXCH mixing. This is due to a constant Lagrangian time scale that was used for 408 

the daytime unstable condition. Unlike PSB1 episodes that all occurred in the afternoon 409 

with well-mixed conditions, for scenarios like CAPTEX experiencing different stability 410 

conditions throughout the day, a time-varying Lagrangain time scale will be more 411 

appropriate for estimating the turbulent velocity variance. Figure 12 is an example of 412 

CAPTEX 7, which was a nighttime release at Sudbury, Ontario, Canada. Similar patterns 413 

for the vertical velocity variance profile were observed in other releases of CAPTEX.  414 

The BH and KC simulations had similar horizontal and vertical distribution 415 

patterns of particles for CAPTEX 1 and resulted in comparable statistical ranks (Figure 416 

13). There were more particles moved to upper levels and less particles stayed in the 417 

lowest 500 m in the TKED simulation. In general, particles were mixed to higher 418 
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altitudes in the TKED option since its vertical velocity variance profile extended to 419 

higher levels than others. In the EXCH case, particles near the surface (the lowest 500 m) 420 

moved slower than the particles above. That may be due to the almost zero vertical 421 

mixing during the nighttime, resulting in particles remaining over Lake Erie and Lake 422 

Ontario and positive bias of tracer concentration in those area. For CAPTEX 7, the 48-423 

hour averaged concentration patterns generated by the KC and TEKD mixing were 424 

similar as shown in Figure 14. The tracer plume in EXCH was narrow at the beginning of 425 

the episode and then became wider in the downwind area that resulted in worse statistical 426 

scores than other simulations. The constant turbulent time scale used in the EXCH option 427 

for computing vertical velocity variances might cause too little mixing at night and 428 

overestimation during daytime. Overall, the statistical rank for all six CAPTEX episodes 429 

(Table 2) shows that the TKED mixing had good performance while the BH options 430 

produced the worst results. For individual episodes, except CAPTEX 2 in which all four 431 

mixing options performed similarly, there was no one scheme that always outperforms 432 

the other options. It is appropriate to keep various options for users to choose depending 433 

on different scenarios or to create dispersion ensembles.   434 

7. Summary and discussion 435 

The turbulent velocity variance is an essential variable in HYSPLIT to determine 436 

the mixing of particles. There are different options available in the model to estimate the 437 

turbulent velocity variance according to the stability and turbulent variables provided by 438 

the meteorological data. In this study, we conducted HYSPLIT simulations driven by 439 

WRF meteorology and using different mixing methods for two control tracer experiments 440 

– PSB1 and CAPTEX that aimed for the sub-kilometer and long-range transport, 441 



20 

respectively. Through the comparisons of turbulent velocity variance (only for PSB1) and 442 

the evaluation of tracer concentrations with measurements, we assessed the performance 443 

of different mixing options affecting the dispersion results.  444 

The KC and EXCH mixing options produced a larger maximum of the vertical 445 

velocity variance than other mixing options did. Simulated maximum vertical velocity 446 

variance occurred at an altitude of about 500 m, which is above the tower measurement 447 

available in the PSB1. The vertical velocity variance profile obtained from the BH 448 

method had a sharp increase from the surface to the height of the maximum values (about 449 

200 m). The TKED case had a flat vertical velocity variance profile with the smallest 450 

variation in its value with height and maximum compared to other cases. The comparison 451 

with measurements near the surface (height at 3.2 m and 30 m) taken during the PSB1 452 

showed that the BH scheme underestimated vertical velocity variance while the KC 453 

option slightly overestimated it. The dispersion results for IOP4 and IOP5 (weak unstable 454 

conditions with moderate winds) were less sensitive to the mixing option than the runs 455 

for IOP2 (unstable with light winds) and IOP3 (neutral with strong winds). The plumes 456 

generated by the BH and TKED method (less disperse due to the weaker vertical velocity 457 

variance) had higher concentrations near the surface than those driven by the KC and 458 

EXCH option (stronger mixing). The larger horizontal velocity variance in the EXCH 459 

generated a slightly wider plume than the one in the EXCHm simulation. HYSPLIT 460 

simulations using different mixing options were conducted for six CAPTEX episodes. 461 

The statistical rank for the TKED run was slightly better than others while the BH mixing 462 

generated results with the worst rank. For scenarios like CAPTEX experiencing different 463 
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stability conditions throughout the day, a time-varying Lagrangain time scale may be 464 

more appropriate for estimating the turbulent velocity variance.  465 

The model performed differently with the four mixing options in varying 466 

scenarios. No one mixing option always outperformed the other options. HYSPLIT users 467 

can select a mixing option according to their scenario and availability of meteorological 468 

fields, as well as use different mixing options to generate dispersion ensembles. The KC 469 

and BH methods re-compute various stability parameters with assumptions for different 470 

stability conditions to obtain the turbulent velocity variance for the dispersion process. 471 

Errors due to the process of re-diagnosing variables may be carried to the dispersion 472 

simulation. However, the advantage of these two methods is that unlike the other options, 473 

no extra variable is required. If only basic meteorological parameters such as wind, 474 

temperature, and pressure are available, HYSPLIT has an alternative option to estimate 475 

the boundary layer stability parameters for computing the turbulent velocity variance 476 

(Stein et al. 2015).  477 

The TKED and EXCH options depend on the mixing variables (TKE and 478 

exchange coefficient, respectively) provided by WRF. If the meteorological data provide 479 

well-simulated TKE fields, HYSPLIT can obtain the velocity variance by partitioning the 480 

horizontal and vertical components. Thus, the main concern for HYSPLIT is to set a 481 

reasonable anisotropy ratio. Note that there is no TKE output if a first-order K-profile 482 

PBL scheme is used for running the meteorological simulation. The underestimation of 483 

TKE values by WRF in the unstable condition shown in the comparison with 484 

measurements from PSB1 needs further investigation.  For the EXCH option, the 485 

turbulent exchange coefficient is needed, but it is not commonly available in 486 
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meteorological model output or reanalysis products that can be used to drive HYSPLIT. 487 

Different PBL schemes have their ways of computing the exchange coefficient, and the 488 

results are rarely evaluated. It is recommended to use a time-varying Lagrangian time 489 

scale to estimate the velocity variance with the turbulent exchange coefficient. The 490 

uncertainty of TKE and exchange coefficient prediction may influence the dispersion 491 

simulation when the velocity variance is computed by the TKED or EXCH mixing option. 492 

For future works, we are interested in an evaluation of modeled vertical velocity variance 493 

with long-term observations that may further give us insight how each mixing option 494 

performs for stable nighttime conditions and unstable daytime conditions. Such 495 

measurements may be found in the DCNet research network (Hicks et al. 2013) and 496 

Doppler Lidar data (Berg et al. 2017). The DCNet data are measurements at six suburban 497 

areas in the eastern United States while Lidar measurements can provide data covering 498 

the entire PBL. With continuous measurements, the velocity variance evaluation is not 499 

limited to certain days or stability scenarios. Furthermore, Project Sagebrush Phase 2 500 

(PSB2; Finn et al. 2018), which was conducted in 2016, consisted of four IOPs during 501 

very unstable conditions and four IOPs during very stable conditions. Similar to the setup 502 

of PSB1, velocity variance observations are available along with tracer concentration 503 

measurements that can be used to evaluate HYSPLIT’s turbulent mixing options and their 504 

impact on dispersion results.  505 
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Figure 6 The same as Figure 5, except the measurements were taken at the GRI station at 627 
30 m height and the modeled values were at 2nd model layer at 30 m. 628 
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Figure 8 The statistical Rank of HYSPLIT results using different mixing options. 630 
Figure 9 Tracer concentration plots for IOP 2 at 2030 UTC on October 5th, 2013 from 631 
HYSPLIT simulations using different mixing options. The shaded color is model 632 
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simulation is noted in each panel. Unit: log ppt. 634 
Figure 10  Tracer concentration plots for IOP 3 at 2030 UTC on October 7th, 2013 from 635 
HYSPLIT simulations using the KC (a) and TKED (b) mixing option. The shaded color 636 
is model concentrations while color-coded circles are measured concentrations. Rank of 637 
each simulation is noted in panel (a) and (b). Unit: log ppt. (c) and (d) Difference plot of 638 
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Figure 11 Time series of vertical velocity variance profiles from HYSPLIT using 640 
different mixing options for September 18th 17 UTC – 19th 16 UTC, 1983 (CAPTEX 1). 641 
Unit: m2s-2. 642 
Figure 12 The same as Figure 11, expect for October 29th 04 UTC – 30th 03 UTC, 1983 643 
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Figure 13 Horizontal and vertical distribution of particles simulated by HYSPLIT using 645 
different mixing options at September 19th 06 UTC, 1983 (CAPTEX 1). Colors indicate 646 
particles at different altitudes. Rank of each simulation is noted in each panel. 647 
Figure 14 Tracer concentration plots for CAPTEX 7 from HYSPLIT simulations using 648 
different mixing options. The shaded color is 48-hour averaged model concentrations 649 
while color-coded circles are measured concentrations. Rank of each simulation is noted 650 
in each panel. Unit: log(pg/m-3). 651 
  652 
Table 1 The ratio of u- and w-variance computed by using measurements taken during the 653 
Sagebrush experiment.  654 
Station name Measurement 

Height (m) 
All data in 
October 

Data on the 
day of IOPs 

Data during 12-18MST 
on IOP days 

G1 4 3.7041 4.1874 4.5567 
G2 30 2.4748 2.6607 2.6127 
R1 45 1.8743 1.8830 1.9990 
R2 3.2 4.2582 4.5396 4.5487 
R3 3.2 4.4776 5.1804 5.3276 
R4 3.2 4.6456 5.6300 5.8733 

FLX 3.2 3.9803 4.6829 5.3066 
ASC 30 - 1.5909 1.8236 

 40 - 1.4331 1.5430 
 50 - 1.4335 1.4650 
 60 - 1.3115 1.3045 
 70 - 1.1898 1.2175 
 80 - 1.1499 1.1052 
 100  1.0902 1.0343 
 130 - 1.0646 1.0058 
 160 - 1.1152 0.8208 

 655 
 656 
Table 2 Rank corresponding to HYSPLIT model results for six CAPTEX tracer releases. 657 

Release BH KC TKED EXCH 
R1 2.49 2.50 2.62 2.38 
R2 2.78 2.72 2.73 2.79 
R3 1.98 1.95 2.11 2.13 
R4 2.14 2.18 2.16 2.49 
R5 2.64 2.52 2.65 2.68 
R7 2.25 2.36 2.33 2.12 
Alla 2.35 2.49 2.51 2.44 

a All data points from six releases are used. 658 
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 659 

 660 
Figure 1 Sampling network for tracer measurements (black dots) for the Sagebrush tracer 661 
experiment. The red dot (labeled “S”) is the release location of tracer. The measurements for velocity 662 
variance were taken at stations labeled as GRI, FLX, R2, R3, and R4 while the measurements for 663 
standard deviation of velocity were taken at stations labeled as ASC and ART.  664 
 665 
  666 
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 667 
Figure 2 The vertical profile of vertical velocity variance computed using different mixing options in 668 
HYSPLIT (a-d) and from the measurement taken at the ASC station (e). Color-code lines indicate 669 
different hours during the IOP 2. The black lines are the averaged vertical velocity variance for 12 – 670 
15 MST on October 5th, 2013.  671 
 672 
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 673 
Figure 3 The time series of observed and modeled TKE (m2s-2) at the GRI tower (30 m height) for 674 
IOP2 and IOP5  from WRF simulations using different TKE-based PBL schemes.  675 
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 676 
Figure 4 The same as Figure 2 but for IOP 5, 12 – 15 MST on October 18th, 2013.  677 
  678 
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 679 
Figure 5 Time series of observed and modeled vertical velocity variance from HYSPLIT. The 680 
measurements were taken at the FLX station at 3.2 m height and modeled values were at 1st model 681 
layer at 10 m. 682 
 683 

 684 
Figure 6 The same as Figure 5, except the measurements were taken at the GRI station at 30 m 685 
height and the modeled values were at 2nd model layer at 30 m.  686 
 687 
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  688 
Figure 7 The same as Figure 5, except for the horizontal velocity variance.  689 
 690 

 691 
Figure 8 The statistical Rank of HYSPLIT results using different mixing options. 692 
  693 
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 694 
Figure 9 Tracer concentration plots for IOP 2 at 2030 UTC on October 5th, 2013 from HYSPLIT 695 
simulations using different mixing options. The shaded color is model concentrations while color-696 
coded circles are measured concentrations. Rank of each simulation is noted in each panel. Unit: log 697 
ppt. 698 
 699 
 700 
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 701 
Figure 10  Tracer concentration plots for IOP 3 at 2030 UTC on October 7th, 2013 from HYSPLIT 702 
simulations using the KC (a) and TKED (b) mixing option. The shaded color is model concentrations 703 
while color-coded circles are measured concentrations. Rank of each simulation is noted in panel (a) 704 
and (b). Unit: log ppt. (c) and (d) Difference plot of tracer concentrations.  705 
 706 
  707 
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 708 
Figure 11 Time series of vertical velocity variance profiles from HYSPLIT using different mixing 709 
options for September 18th 17 UTC – 19th 16 UTC, 1983 (CAPTEX 1). Unit: m2s-2. 710 
 711 
  712 
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 713 
Figure 12 The same as Figure 11, expect for October 29th 04 UTC – 30th 03 UTC, 1983 (CATPEX 7).   714 
 715 
  716 
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 717 
Figure 13 Horizontal and vertical distribution of particles simulated by HYSPLIT using different 718 
mixing options at September 19th 06 UTC, 1983 (CAPTEX 1). Colors indicate particles at different 719 
altitudes. Rank of each simulation is noted in each panel. 720 
  721 
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 722 
Figure 14 Tracer concentration plots for CAPTEX 7 from HYSPLIT simulations using different 723 
mixing options. The shaded color is 48-hour averaged model concentrations while color-coded circles 724 
are measured concentrations. Rank of each simulation is noted in each panel. Unit: log(pg/m-3). 725 
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